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Abstract.—DNA barcoding as a method for species identification is rapidly increasing in popularity. However, there are still
relatively few rigorous methodological tests of DNA barcoding. Current distance-based methods are frequently criticized for
treating the nearest neighbor as the closest relative via a raw similarity score, lacking an objective set of criteria to delineate
taxa, or for being incongruent with classical character-based taxonomy. Here, we propose an artificial intelligence–based
approach—inferring species membership via DNA barcoding with back-propagation neural networks (named BP-based
species identification)—as a new advance to the spectrum of available methods. We demonstrate the value of this approach
with simulated data sets representing different levels of sequence variation under coalescent simulations with various
evolutionary models, as well as with two empirical data sets of COI sequences from East Asian ground beetles (Carabidae)
and Costa Rican skipper butterflies. With a 630- to 690-bp fragment of the COI gene, we identified 97.50% of 80 unknown
sequences of ground beetles, 95.63%, 96.10%, and 100% of 275, 205, and 9 unknown sequences of the neotropical skipper
butterfly to their correct species, respectively. Our simulation studies indicate that the success rates of species identification
depend on the divergence of sequences, the length of sequences, and the number of reference sequences. Particularly in
cases involving incomplete lineage sorting, this new BP-based method appears to be superior to commonly used methods
for DNA-based species identification. [Back-propagation; DNA barcoding; incomplete lineage sorting; neural networks;
species identification.]

DNA barcoding has attracted considerable recent at-
tention with promises to aid in species identification and
bioinventory efforts (Hebert et al., 2003a, 2003b; Ebach
and Holdrege, 2005; Gregory, 2005; Marshall, 2005; Schin-
del and Miller, 2005; Ratnasingham and Hebert, 2007).
Although still controversial (Will and Rubinoff, 2004;
Prendini, 2005; Hickerson et al., 2006; Meier et al., 2006;
Whitworth et al., 2007), and certainly not a replacement
of traditional taxonomy, numerous potential benefits
of DNA barcoding have been generally acknowledged
(Savolainen et al., 2005; Ratnasingham and Hebert, 2007).

However, one major issue that needs to be resolved
is how to read the organismal barcode once it is gen-
erated (DeSalle et al., 2005). Most recently published
approaches to DNA barcoding have used distance
measures to infer species affiliation (Hebert et al.,
2003a, 2003b, 2004). These include two frequently
used methods—a simple BLAST approach (Altschul
et al., 1990, 1997) and a tree-based genetic distance
approach (Hebert et al., 2003a, 2003b; Steinke et al.,
2005). These approaches generally use a raw similarity
score to produce a nearest neighbor that is not neces-
sarily the closest relative (Koski and Golding, 2001).
Furthermore, an a priori similarity cut-off is needed
to determine species status using these methods. It
remains questionable whether such universal cut-off
values exist, even among congeneric species (Ferguson,
2002; Hickerson et al., 2006; Whitworth et al., 2007).
Thirdly, information is inevitably lost when differences
among sequences are converted into genetic distances
(Steel et al., 1988). Finally, these non–character-based
methods are also criticized as being incompatible with
classical character-based taxonomy (DeSalle et al., 2005).

Recently, two new strategies based on a Bayesian
framework and decision theory, respectively (Nielsen

and Matz, 2006; Abdo and Golding, 2007), have ad-
vanced DNA barcoding practice considerably by in-
corporating statistical approaches that include more
information available in DNA sequences. However,
these two methods, in essence, are still distance-based in
the way they use sequence information, although they
use the information in different ways. As we have men-
tioned above, it has been pointed out by Steel et al. (1988)
that genetic information will inevitably be lost when the
difference between two sequences is converted into ge-
netic distances, regardless of the way the genetic distance
is later used. Furthermore, as pointed out by Abdo and
Golding (2007), the Bayesian method as currently imple-
mented (Nielsen and Matz, 2006) cannot handle more
than two populations/species at a time and requires a
two-step procedure to resolve a “species tie,” thereby
limiting its use in the practice of DNA barcoding. Al-
though the decision-theory method (Abdo and Golding
2007) uses more of the information in the data than sim-
ple distance-based methods, this power comes with a
computational expense; e.g., the performance deterio-
rates even with a small sample size of 25 (in their study
they claim that this was a large sample size). Finally, both
of these methods rely on some rather restrictive assump-
tions, such as phylogenetic hypotheses, population ge-
netic postulates, and evolutionary models that may not
always apply to real data (Nielsen and Matz, 2006; Abdo
and Golding, 2007).

In this paper, we propose a new method of allocating
specimens to species using DNA sequence data, based
on existing back-propagation neural network methods.
Artificial neural networks (ANNs) were originally
developed to model the function of connected neurons
in the brain (Rosenblatt, 1958) and they continue to be
used in cognitive science. However, their utility as a
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general computational method was realized with the
development of the back-propagation method (Werbos,
1974; Rumelhart et al., 1986; Parker, 1987). Smith (1993)
described neural networks and the back-propagation
procedure in detail. The method is nonlinear, can rep-
resent any function to an arbitrary precision, and makes
no assumptions about the frequency distributions of the
data. Although each individual neuron implements its
function rather slowly and imperfectly, collectively a
network can perform a surprising number of tasks quite
efficiently (Reilly and Cooper, 1990). This information-
processing characteristic makes ANNs a powerful
computational device, able to learn from examples and
capable of generalizing to examples never seen before
(Zhang et al., 1998). They have been applied successfully
in many fields, including the prediction of financial
markets, speech synthesis, handwriting recognition,
and medical diagnostics. In the fields of evolutionary
biology and molecular biology, artificial neural networks
have been applied to DNA/RNA and protein sequence
analysis (Wu, 1997; Wu and Chen, 1997) such as protein
and ribosomal RNA classification (Wu and Shivakumer,
1994; Wu et al., 1995; Wang, 1998) and phylogenetic
reconstruction (Dopazo and Carazo, 1997).

Below we demonstrate using a set of simulated data
sets and two empirical data sets how such an artificial
intelligence–based approach can be used to assign an
unknown sequence to a species name. The empirical data
sets include examples of different phylogenetic distances
comprising sets of related species and genera (ground
beetles) and a complex of closely related cryptic species
(skipper butterfly).

MATERIALS AND METHODS

Neural Network

Definition of a neural network.—A neural network is a
parallel computational model comprised of a large num-
ber of adaptive processing units (neurons) that commu-
nicate through interconnections with variable strengths
(weights), in which the learned information is stored. A
multiple layer network has one or more layers of hidden
neurons, which enables the learning of complex tasks
by extracting progressively more meaningful features
from the input patterns (Wu, 1997). Figure 1a shows a
typical neural network that contains one input layer, a
few hidden layers, and one output layer (Zhang et al.,
1998; Zhang et al., 2002; Appendix 1). In this figure, the
circles indicate input neurons and the rectangles repre-
sent neurons that are extremely simple analog comput-
ing devices. In this study, we always use three layers
(described as n-h-m network); the input layer contains
the values for vector X = [x1, x2, . . . , xn], a hidden layer
that contains h codes (h = int(log2(n))), and one output
vector O = [o1, o2, . . . , om] that gives the values of out-
put. The lines connecting the neurons represent weights
that could be described by two matrices:

W(1) =




w11 . . . w1 j

...
. . .

...
wi1 · · · whn


 (1)

and

W(2) =




w11 . . . w1 j

...
. . .

...
wi1 · · · wmh


 (2)

The following activation function,

f (x) = 1
1 + e−x

(3)

was used to compute the value of a neuron. Let the acti-
vation value for neuron j be o j . Let the weight between
neuron j and neuron i be wi j (1, 2). These weights are
what determine the output of the neural network. There-
fore, it can be said that the connection weights form the
memory of the neural network. Let the net input to neu-
ron be netj , then

netj =
∑
i=1,k

wi j o j (4)

where k is the number of neurons feeding into neuron j
and

o j = f (netj ) = 1

1 + e
−

∑
i=1,k

wi j o j
(5)

Training a network using reference sequences.—Reference
sequences were digitized using the following codes: A =
0.1, T = 0.2, G = 0.3, C = 0.4 and were used to train the
network (Fig. 1b). A layer’s weights and biases were ini-
tialized according to the Nguyen-Widrow initialization
algorithm (Nguyen and Widrow, 1990), which chooses
values in order to distribute the active region of each
neuron in the layer evenly across the layer’s input space.
Each row vector ti (i = 1, 2, . . . , m, where m is the num-
ber of species) was contained in the following diagonal
matrix

T =




a11 . . . 0
... aii

...
0 · · · amm


 (6)

where aii is equal to 1, representing species i . The train-
ing process is usually as follows (Zhang et al., 1998).
First, examples of the training set are entered into the
input nodes. The activation values of the input nodes
are weighted and accumulated at each node in the first
hidden layer. The total is then transformed by an activa-
tion function into the node’s activation value. It in turn
becomes an input into the nodes of the next layer, until
eventually the output activation values are found. The
training algorithm is used to find the weights that mini-
mize some overall error measure such as mean squared
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FIGURE 1. Neural network and processing scheme of sequences involved. (a) A typical neural network, including one input layer, a few
hidden layers, and one output layer. In this study, we use a three-layer BP network (see text). X = [x1, x2, . . . , xn] is the input layer vector, and
O = [o1, o2, . . . , om] is the output layer vector. The circles or rectangles are the neurons. W(1), W(2), together with the lines connecting the neurons,
represent the weights for each layer respectively (see text for the definitions). (b) Processing scheme of references sequences (training data set)
and query sequences (test data set). Above the dotted line is the training data set and below are the test data set cases. The line with arrow
indicates the direction of processing. The sequences were coded using the method described in the text. A set of weights and biases were obtained
once a network was trained. A trained network is ready to assign a query sequence to a known species by producing a corresponding row vector.
The double vertical dashed line indicates how the top graph fits into the bottom graph.

errors (MSEs). Hence the network training is actually an
unconstrained nonlinear minimization problem. Before
a network is trained, the weights and biases are evalu-
ated using the Nguyen-Widrow initialization algorithm
(Nguyen and Widrow, 1990). To put it simply, the training
process will try to adjust the weights so that the network

will generate correct target outputs for given network
inputs. We used mean squared error (MSE)—the aver-
age squared error between the networks and the target
outputs as a performance function. The weights and bi-
ases are updated in the direction of the negative gradi-
ent of the performance function using a technique called
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back-propagation (Werbos, 1974; Parker, 1982; Rumel-
hart and McClelland, 1986; Smith, 1993), which involves
performing computations backwards through the net-
work. To provide faster convergence and allow a net-
work to respond not only to the local gradient but also
to recent trends in the error surface, momentum has
been added to back-propagation learning by making
weight changes equal to the sum of a fraction of the last
weight change and the new change suggested by the
back-propagation rule. Briefly, back-propagation is used
to calculate derivatives of performanceper f with respect
to the weight and bias variables X. Each variable is ad-
justed according to gradient descent with momentum,

d X = mc × dXprev + lr × (1 − mc) × dperf/d X (7)

where d Xprev is the previous change to the weight
or bias, mc is the value of momentum, and lr repre-
sents the learning parameters. One hundred thousand
or more iterations (epochs) were used to achieve smaller
values of mean square errors. For a trained network,
the main parameters, weights and the bias, were saved.
A value of 0.95 (the highest theoretical value is 1) for
the projected vector as the BP identification score was
used because higher values would need longer training
times.

Identifying query sequences using a trained network.—
The query sequences were coded using the method de-
scribed above. Each numeral coding of each nucleotide
site became one element of the input vector X (Fig. 1b).
Then, the input vector X was fed into the trained net-
work, and one output row vector O, corresponding to a
different species following Formula 6, was obtained for
each input vector X (see Fig. 1 for details). The aim of
training a network is to let o1, o2, ..., om be close to tar-
get vector T, whose sub-row-vectors, such as (1, 0, 0, 0)
for a four-species example, represent species 1 (prede-
fined). After training, the output vector of the network
for one of sequences selected from species 1 could be like
(0.9989, 0, 0, 0). In our study, we use 0.95 as a threshold.
Higher values (than 0.95) could be used but may need
longer training time (the highest theoretical value is 1).
In the example above, the vector would refer to species
1, whereas species 2 would correspond to (0, 1, 0, 0). The
success rate of species identification was based on the
following formula:

Ratesuccess = Numberhit

Numbertest
(8)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FIGURE 2. Simple/coalescent simulation scenario. (a–e) Model tree and neighbor-joining (NJ) trees (one example each from twenty simulated

datasets) of the simulated sequences of different divergence in the simple simulation scenario. (a) Model tree, which contains four species, each
including 32 individuals; (b) NJ tree of 400-bp sequence with low sequence variation (400 bp L); (c) NJ tree of 750-bp sequence with low sequence
variation (750 bp L); (d) NJ tree of 400-bp sequence with high sequence variation (400 bp H); (e) NJ tree of 750-bp sequence with high sequence
variation (750 bp H). The different terminal symbols on each tree correspond to the four species in (a) (f, g) Gene tree (white, inside) simulated
by neutral coalescence within simulated species tree (black, outside) in the coalescent simulation scenario (GTR +� + I model). (f) Example of
a gene tree contained in a species tree of recent divergence (total depth of species tree =1 Ne , where Ne = 100, 000). (g) Example of a gene tree
contained in a species tree of ancient divergence (total depth of species tree =10 Ne , where Ne = 100, 000). Thirty-two sequences were simulated
for each species. More topologies of species trees simulated in this study can be found in online Appendix 1.

where Numberhit and Numbertest are the numbers of se-
quences successfully hit by the present method and the
number of total query sequences examined, respectively.

Simulated Data Sets

We used computer simulations to investigate the
power of our new approach in different situations.
Firstly, using a relatively simple model of molecular evo-
lution, we evaluated the effects of sequence length and
the size of the training data set on the success rate of
species identification with different methods. Secondly,
we fixed the length of sequences and further evaluated
the influence of the size of the training data sets, together
with incomplete lineage sorting, on the success rate of
species identification under coalescent simulations with
more complex evolutionary models.

Simulation with simple evolutionary models.—A total of
128 sequences was generated using Monte Carlo simu-
lation of DNA sequence evolution implemented in Seq-
Gen (Rambaut and Grassly, 1997) for a model tree with
four species (A, B, C, D), each including 32 individuals
(Fig. 2a). We randomly chose 4, 8, 16, 24, and 28 sequences
from each species to construct data sets containing 16, 32,
64, 96, and 112 reference sequences, respectively. The re-
maining sequences from the corresponding data set were
used as query sequences.

The F84 model (Felsenstein, 1984; Yang, 1993) was used
to generate the simulated data (Fig. 2a). We set the tran-
sition/transversion ratio (k) equal to 10, the gamma pa-
rameter (�) to 10, and the frequencies of nucleotides A,
C, G, and T, gA, gC , gG , and gT , respectively, to 0.35, 0.15,
0.15, and 0.35. The L1 and L2 values, which indicate the
levels of sequence divergence on the model trees, were
set to represent a range of divergence levels from high
to low (L2/L1 = 0.01/0.2 and L2/L1 = 0.001/0.0015,
respectively), where L1 and L2 represent substitution
rate per site among species and within species, respec-
tively. Each branch length is assumed to denote the mean
number of nucleotide substitutions per site that will be
simulated along that branch. For each parameter com-
bination, the topologies displayed in Fig. 2a were simu-
lated 20 times, generating random data sets of 400 bp and
750 bp in length, respectively. The longer sequence cor-
responds to the standard fragment length that is used in
animal barcoding (Herbert et al., 2003a, 2003b). The 400-
bp fragment was used to investigate the feasibility of
using shorter sequences in DNA barcoding. The result-
ing sets of sequences were used to generate the data sets
of reference sequences and query sequences described
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above. The success rate was calculated using Equation 8.
The average success rate of 20 runs was used for com-
parisons.

Coalescent simulations with complex evolutionary
models.—For these simulations, we took into account
the possible discordance between species trees and
gene trees resulting from incomplete lineage sorting
(divergence time in generations less than 1 Ne ), together
with complex evolutionary models. All simulations
were performed using Mesquite version 1.12 (Maddison
and Maddison, 2006).

The simulation strategy is illustrated in Figure 2f,
g. First, species trees were generated by a pure
birth process using Mesquite’s Uniform Speciation
(Yule) module. We generated 20 species trees with
different topologies (online Appendix 1; available at
www.systematicbiology.org). Within each species tree,
coalescent simulations were performed to generate gene
trees. We then simulated sequence evolution along those
gene trees to generate a set of sequence matrices using
the GTR +� + I model (two different settings: GTR1 and
GTR2; see below). We fixed the length of the sequence to
648 base pairs, which is a commonly used length (Hebert
et al., 2003a, 2003b), and we had already investigated the
effect of sequence lengths on the success rate of species
identification in the simulations above. For both GTR
models, we considered deeper species trees (total depth
of 10 Ne generations) and shallower species trees (depth
= 1Ne ). Parameter values used in GTR1 (GTR +� + I )
were derived from Roe and Sperling’s (2007) study, al-
though they could be assigned arbitrarily: base frequen-
cies 0.35 A, 0.15 C, 0.25 G, 0.25 T; rates AC = 2, AG = 4,
AT = 1.8, CG = 1.4, CT = 6, and GT = 1; gamma shape pa-
rameter was set as 0.5, and proportion of invariable sites
was equal to 0.26. For GTR2 (GTR +� + I ), we used the
following settings: base frequencies 0.32 A, 0.10 C, 0.12
G, 0.46 T; rates matrix 10.6 AC, 16.7 AG, 8.8 AT, 1.5 CG,
122.9 CT, and 1.0 GT; gamma shape parameter 0.85; and
proportion of invariable sites 0.58. An effective popula-
tion size (Ne ) of 100,000 and a scaling factor of 3 × 10−8

were used for all simulations.
We simulated eight species, each containing 32 indi-

viduals, resulting in 256 OTUs for each sequence matrix.
We selected 1, 4, 12, 24, and 28 individuals from each of
eight species as training data in each sequence matrix,
resulting in training data sets with 8, 32, 96, 192, and 224
sequences, respectively. The remaining sequences were
used as query sequences.

To compare with commonly used approaches, we
also calculated success rates using both the simple
BLAST approach (Altschul et al., 1990, 1997) and
a distance-based approach (Hebert et al., 2003a,
2003b; Steinke et al., 2005) in each simulated data set.
We used a standalone BLAST program for Windows
(BLASTN 2.2.14; Altschul et al., 1997, ftp://ftp.ncbi.nlm.
nih.gov/blast/executables/LATEST-BLAST/), whose
main advantage is the ability to create our own BLAST
databases using reference sequences. Each query se-
quence was submitted and compared with the contents

of the BLAST databases. The sequence producing the
maximum score in the database was considered to be
conspecific with the query sequence. We also calculated
corrected pairwise genetic distances between each query
sequence and reference sequence under the F84 or GTR
models using PAUP* version 4.0b10 (Swofford, 2002).
The query sequence was considered conspecific with
the least distant reference sequence. The success rate of
species identifications were calculated using Equation 8
as above. To study the relationship of the success rate
among these methods and our BP-based method, we
further performed correlation analysis among the three
methods under complex simulations.

Ground Beetle Data

We examined an empirical data set taken from Zhang
et al. (2005, 2006) and Zhang and Sota (2007), con-
sisting of 159 mitochondrial COI sequences (690 bp)
from nine ground beetle species that belong to two
subgenera of Carabus (Coleoptera: Carabidae), Lepto-
carabus and Coptolabrus (online Appendix 2; available
at www.systematicbiology.org). Six to 30 individuals of
each species were sampled from different locations on
the Korean peninsula and Japanese islands. The beetles
were determined based on characters of external and
genital morphology. We divided the sequences into two
categories, reference sequences and query sequences, by
randomly choosing half of the individuals from each
species. This resulted in 79 reference sequences and 80
query sequences (online Appendix 2). The former were
used to train a three-layer network, and the latter were
fed into the trained network to output row vectors cor-
responding to species. The success rate of species iden-
tification was calculated using Equation 8. Additionally,
as mentioned above, to examine the power of shorter
sequences in species identification, we simply divided
the 690-bp COI sequence into the first half and the sec-
ond half, each 345 bp in length. As above, with these
shorter lengths we used 79 reference sequences and 80
query sequences. Two new networks were constructed
and trained, corresponding to these two data sets.

Neotropical Skipper Butterfly Data

We also used an empirical data set of the Neotropi-
cal skipper butterfly “Astraptes fulgerator” (Lepidoptera:
Hesperiidae), which recently has been proposed to form
a complex of at least 10 separate species on the ba-
sis of DNA barcoding (Hebert et al., 2004; but see
Brower, 2006). Four hundred and seven mitochondrial
COI sequences of Astraptes fulgerator were obtained
from the published DNA barcoding project (Code-EPAF:
http://barcodinglife.org/views/projectlist.php?&). We
removed sequences that were too short or contained
ambiguous characters. The remaining sequences were
aligned using ClustalX version 1.83 (Chenna et al., 2003),
resulting in an alignment of 630 bp (online Appendix 2).
This empirical data set provides an ideal basis for com-
parison of our approach with other recently developed
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barcoding identification strategies, because it was used
in both the Nielsen and Matz (2006) and Abdo and Gold-
ing (2007) studies. Abdo and Golding (2007) have shown
that their decision-theory method resulted in higher rates
of correct species assignment than the Nielsen and Matz
(2006) method, we therefore focused on the compari-
son between Abdo and Golding’s and our approaches.
In their simulation, Abdo and Golding took almost all
available sequences as training data, and only one se-
quence was drawn as the query sequence from all the
available sequences. To contrast against the Abdo and
Golding (2007) method, we only chose one third, half,
and all except for one of the sequences of each species
randomly as training data (note: in this latter case, we
still used fewer training data since we withheld nine se-
quences as query sequences). The corresponding remain-
ing sequences were used as query sequences. Obviously,
our training data sets were much smaller than theirs. As
the number of available training sequences is limited in
most real barcoding projects, we regard the method that
requires fewer reference sequences for an equally good
performance as superior.

Phylogenetic Analysis

Phylogenetic trees, under the maximum likelihood
(ML) criterion, were inferred using PAUP* 4.0b10
(Swofford, 2002) and Garli v.0.951 (Zwickl, 2006);
Bayesian methods were implemented using MrBayes
v3.1.2 (Ronquist and Huelsenbeck, 2003). We used
the GTR + � + I (carabid data set) and HKY + � +
I (hesperiid data set) models chosen by implementation
of the AIC in the program MrModelTest v2.2 (Nylan-
der, 2004). For the carabid data set PAUP* was used to
first optimize parameter values via an iterative fixation
and relaxation of parameters combined with heuristic
searching with TBR branch swapping. This strategy is
described in Sullivan et al. (2005). Once parameter val-
ues stabilized with additional searches, we fixed them for
subsequent ML bootstrapping. Bootstrapping entailed
heuristic searching with TBR branch swapping on start-
ing trees obtained by neighbor joining with a limitation of
1000 rearrangements evaluated for each of 100 searches.
This was repeated and the (nearly identical) bootstrap
values of the two runs were averaged for reporting on
the presented trees. Due to the large size of the hesperiid
data set (407 OTUs), PAUP* could not be used to per-
form ML bootstrapping. Instead, we used the genetic
algorithm approach implemented in the program Garli
v.0.951 (Zwickl, 2006), which enabled us to complete
100 pseudoreplicate ML bootstrap analyses for these 407
OTUs in 2 CPU days (on a 2.16-GHz Intel Core Duo
Macintosh).

Bayesian analyses were conducted by using MrBayes’
default strategy of running two simultaneous analyses,
allowing for monitoring of the average standard devi-
ation of the split frequencies to help assess when sta-
tionarity of the MCMC chains had been reached. These
chains were run for 5 million steps, sampling one of ev-
ery 1000 trees. This was repeated for a total of four in-

dependent runs. For the carabid data set, the average
standard deviation of the split frequencies reached 0.015
by step 2.5 million, so burn-in was set at 50%, resulting
in 2500 trees from each run. For the hesperiid data set,
the average standard deviation of the split frequencies
of the first analysis never got below 0.9, whereas this
metric dropped below 0.05 for the second analysis by
step 2.5 million, indicating that the runs had converged.
The uncorrected potential scale reduction factor (PSRF)
of Gelman and Rubin (1992), which should approach 1 as
runs converge, was 1.00 for all post–burn-in parameter
estimates. Examination of the trace files for these MCMC
runs also showed all four analyses had reached the same
parameter space. The carabid data set chains reached
stationarity with nearly identical harmonic means of the
marginal log-likelihoods (−4133 to −4134, combined ESS
of 954). Tracer v1.3 was used to calculate the autocorrela-
tion times (the distance separating independent samples)
of each of these four runs, which were 9585 to 11,460, sug-
gesting our sampling strategy of one tree per 1000 was
oversampling by a factor of 10. The harmonic means of
the marginal log-likelihoods for the hesperiid data set
were also virtually identical (−2001 to −2010) and the
combined ESS for all parameters was >309, indicating
that sufficient independent samples had been taken to
estimate the model parameters. The 50% majority-rule
consensus phylogram built from the post–burn-in trees
of the first two independent runs of the carabid data set
and the second two runs of the hesperriid data set was
used to present the inferred phylogenies.

RESULTS

Simulated Data Sets

Simple model scenario.—The network was trained using
the reference sequences with 100,000 iterations (epochs)
for each simulation data set. This produced a mean
squared error less than 0.0001. It took 10 min for a data set
of 16 sequences of 400 bp from four species to about 5 h
for a data set of 224 sequences of 648 bp from eight species
to train a network on a Windows PC (Intel (R), Core (TM)
2 CPU 6400, 2.13 GHz, 0.99 GB of RAM, depending on the
size of data set. Once a data set was trained, it could iden-
tify thousands of test sequences within a few seconds or
minutes. It’s also possible to continue the training of one
network by adding additional training data. This could
be very useful in the DNA-barcoding practice.

All compared methods—BP-based species identifica-
tion, BLAST, and distance-based approaches—can iden-
tify species with almost 100% average success rates in the
case of high levels of sequence variation (interspecific
divergence greatly exceeding intraspecific divergence),
regardless of the length of sequences and the number
of reference sequences (results not shown). In simula-
tions with extremely low levels of sequence variation,
the success rate of species identification to a large ex-
tent depends on the size of data set (number of ref-
erence sequences) and length of sequence (Fig. 3a, b).
However, our method can identify species with higher
success rate than traditional BLAST and distance-based
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FIGURE 3. Success rates of species identifications with BLAST method, genetic distance method, and BP-based method in the simple sim-
ulation/model scenario (with low sequence divergence) and under coalescent simulation with the GTR +� + I model. All above simulations
were conducted with 8, 32, 96, 192, and 224 reference sequences, respectively. Detailed settings of parameters of each model can be found in
the text. Triangle, circle, and solid squares indicate the success rates of BLAST method (BL), genetic distance (GD), and BP-based methods (BP),
respectively. Horizontal bars below and above each symbol represent standard errors.

approaches in almost all cases of low levels of sequence
variation, especially with smaller data sets. For example,
for the 16-sequence data set with 750-bp length sequence,
the BLAST and distance-based methods only assigned
91.43% ± 2.19% and 88.61% ± 2.31% of the query se-
quences to the correct species, respectively, whereas our
BP-based species identification approach allowed cor-
rect identifications with a substantially higher success
rate (95.54% ± 0.08%; Fig. 3b).

Generally, with low sequence variation, an overall in-
crease in the success rate of species identification was
observed with increasing reference sequence data set
size for all methods; e.g., from 91.43% ± 2.19% success
rate (16 sequences data set) to 98.75% ± 0.73% success
rate (112 sequences database) for BLAST method, and
from 95.54% ± 1.50% success rate to 100.00% ± 0.00%
success rate for our BP-based method (Fig. 3b). Short
sequences (400 bp) yielded much lower success rates

than long sequences (750 bp), regardless of the number
of reference sequences in the data set (80.76% ± 2.80%
with 400 bp versus 91.43% ± 2.19% with 750 bp for the
BLAST method; 92.23% ± 1.70 % with 400 bp versus
95.54% ± 1.50% with 750 bp for our BP-based method;
Fig. 3a, b).

Coalescent simulations with complex models.—Figure 3c
to f summarizes the simulation results of two different co-
alescent models (GTR1 and GTR2). In all cases using these
more complex simulated data, the average success rate of
the BP-based method was significantly greater than that
of BLAST or distance-based methods (Fig. 3c to f; online
Appendix 3; available at www.systematicbiology.org),
especially in cases involving incomplete lineage sort-
ing (1Ne ). Both distance-based and BLAST methods per-
formed poorly in situations of incomplete lineage sorting
with a small number of reference sequences; e.g., BLAST
and distance-based methods could only identify species
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with success rates of 33.16% ± 2.19% and 40.18% ± 1.57%,
respectively, when only one sequence of each species was
selected as the reference sequence (Fig. 3c, e). With in-
creasing of numbers of reference sequences, both the
BP-based method and the BLAST and distance-based
methods attained higher success rates (Fig. 3c to f).
There is a large difference in correct species identifica-
tion between deeper and shallower species trees (to-
tal depth of 10 Ne generations versus 1 Ne ) for all
three methods (Fig. 3c to f). All presented higher suc-
cess rates with deeper internal branches than with
shallower, regardless of the underlying evolutionary
models and the number of reference sequences. For ex-
ample, the BLAST and the genetic distance methods ob-
tained success rates of 51.54% ± 2.84% and 69.84 ± 1.94%,
respectively, under the model of GTR2 with 224 refer-
ence sequences (shallow species trees: 1 Ne ), whereas
the BP-based method attained a 93.13% ± 1.29% suc-
cess rate in the same situation. However, they achieved
success rates of 89.06%, 93.28%, and 97.34%, respec-
tively, with deeper species trees (deep species trees: 10
Ne ). The distance-based method demonstrated slightly
higher success rate of species identification than the
simple BLAST approach under the model of GTR2, al-
though both methods identified species with lower suc-
cess rates than the BP-based method (Fig. 3c to f, online
Appendix 3).

Significant correlations of success rates between the
BLAST and distance-based methods were found (P =
0.00128 or <0.0001), whereas no correlation was found
between the BP-based method and the BLAST or genetic
distance methods (P = 0.78–0.96 in all cases). This analy-
sis indicates that the BP-based method performs species
identifications in a quite different (and more successful)
way than distance-based and BLAST approaches.

Empirical Data Sets

Bayesian trees from four independent runs for nine
ground beetle species are presented in Figure 4a. Detailed
relationships for three closely related, nonmonophyletic
Carabus species, C. (L.) arboreus, C. (L.) procerulus, and
C. (L.) hiurai, are presented in Figure 4b. Figure 5 shows
Bayesian trees from four independent runs for the species
Astraptes fulgerator for 407 OTUs.

The network was trained for the empirical data sets us-
ing the same method used for the simulated data; the con-
nection weights and output vectors are shown in online
Appendix 4 (available at www.systematicbiology.org).
A total of 159 identified ground beetle specimens were
used. We randomly selected 79 sequences from all of the
nine ground beetle species (half of each species) as ref-
erence sequences to train a three-layer network. Among
80 query sequences, 78, 76, and 78 sequences were suc-
cessfully assigned to the correct species (97.50%, 95.00%,
and 97.50% success rate, respectively) with the first half
(345 bp), the second half (345 bp), and the entire 690 bp of
COI. The sequences not assigned to their correct species
belong to two closely related species, Carabus (Lepto-
carabus) arboreus and C. (L.) hiurai, which may exhibit

trans-species mitochondrial polymorphism (Kim et al.,
2000a, 2000b; see also Fig. 4b).

For the skipper butterfly, the training data sets
included 132, 202, and 398 sequences, and the corre-
sponding sizes of query data sets were 275, 205, and 9 se-
quences (Fig. 5). Of these, 263, 197, and 9 sequences were
successfully assigned to their correct species (95.63%,
96.10%, and 100% success rates, respectively). We have
not achieved a 100% success rate in the situations of
training data sets with sizes of 132 and 202, which were
one third and half of the total 407 sequences, due to the
low level of divergence of sequences among these puta-
tive “species.” However, our method attained a success
rate of 100% when 398 sequences from a total of 407 se-
quences (97.78%) were used as training data, whereas
the decision-theory method attained the same success
rate with 462 training sequences from a total of 463 se-
quences (99.78% of the total sequences; Abdo and Gold-
ing, 2007). Because these authors did not conduct a study
on smaller training data sets, like we have done here, we
cannot make a thorough comparison with their methods.
With large training data sets, we found that our method
achieved the same success rate (100%) as theirs.

DISCUSSION

Our results suggest that a BP approach has potential
to become a powerful tool for inferring species mem-
bership via DNA sequence comparison. This artificial
intelligence–based approach, which is entirely different
from current distance-based approaches, does not re-
quire a priori cut-off to identify species. The neural net-
work used will obtain and remember this information
from the reference sequences via adjusting weights and
biases of the network automatically. Our method uses
more sequence information than other currently avail-
able methods, such as BLAST, simple genetic distance–
based methods, the Bayesian method of Nielsen and
Matz (2006), or the decision-theory method of Abdo and
Golding (2007). These approaches identify species on
the basis of differences between two sequences via raw
scores, simple genetic distances, or genetic distances cor-
rected by evolutionary models. In contrast, our BP ap-
proach takes into account not only differences between
sequences but also the pattern of the differences; e.g.,
the relative position of variable sites. Our correlation
analysis of success rates of species identification among
the BLAST approach, the genetic distance method, and
the BP-based method also indicates that the BP-based
method performs species identification in a fundamen-
tally different way from distance-based and BLAST
approaches.

The second apparent advantage to our method is that
it is based on fewer or almost no assumptions when mak-
ing inferences, whereas almost all current methods rely
on a number of more or less restrictive assumptions that
may not apply to real data (Nielsen and Matz, 2006). For
example, BLAST and simple distance methods assume
that extreme scores or minimal genetic distances indicate
close relationship between species, which does not hold
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FIGURE 4. Analyses conducted using MrBayes v3.1.2 with GTR +� + I model chosen by MrModelTest. Branch support values are estimated
posterior probabilities on the left, maximum likelihood bootstrap proportions on the right, based on 100 pseudoreplicate heuristic searches
using PAUP* with parameter values fixed. Double asterisks indicate branches not recovered in >50% of ML bootstrap searches. (a) The 50%
majority-rule consensus phylogram of 5000 post–burn-in Bayesian trees from four independent runs for nine ground beetle species based on
690 base pairs of mitochondrial DNA sequences (COI). (b) Three closely related, nonmonophyletic Carabus species (from (a); see text for detail).
Terminal codes starting with “arb,” “pro,” and “hiu” indicate C. (L.) arboreus, C. (L.) procerulus, and C. (L.) hiurai, respectively. The data matrix
was listed in online Appendix 2.
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FIGURE 5. The 50% majority-rule consensus (unrooted) phylogram of 5000 post–burn-in Bayesian trees from four independent runs for the
species Astraptes fulgerator (Lepidoptera: Hesperiidae) based on 630 base pairs of mitochondrial DNA sequences (COI) for 407 OTUs (sequences
listed in online Appendix 2). Note: For clarity, only branches with greater than 0.89 posterior probability are provided with branch support
values. Clade names correspond to those used in Hebert et al. (2004). Analyses conducted using MrBayes v3.1.2 with HKY +� + I model chosen
by MrModelTest. Branch support values are estimated posterior probabilities on the left, maximum likelihood bootstrap proportions on the right,
based on 100 pseudoreplicate heuristic searches using GARLI with parameter values fixed. Double asterisks indicate branches not recovered in
>50% of ML bootstrap searches.

true in the obvious case of incomplete lineage sorting.
The Bayesian method of Nielsen and Matz (2006) and
the decision-theory method of Abdo and Golding (2007)
depend on various phylogenetic or population genetic
assumptions. For example, the latter assumes an ideal
panmictic population for all species or groups under
study without recombination, migration, and so on, so
that the evolutionary process within each group is gov-
erned by only one parameter; i.e., the number of muta-
tional steps between two individuals within that group.
Even so, both of these methods cannot estimate popula-
tion genetic parameters in the case where only one se-
quence is known from each species. In this extreme case,
the BP-based method has a clear advantage, as we have
shown with simulated data (e.g., Fig. 3c, e).

Our method has the potential to use other kinds of
characters easily, such as morphological characters, or
even behavioral data, by simply coding them together

with DNA data. This would reduce the danger of rely-
ing on a single DNA fragment for identifying and de-
limiting species (Roe and Sperling, 2007), although it
would increase the per specimen processing cost. Our
method therefore would be compatible with current tax-
onomic practices, and it is more appropriate for the con-
struction of a barcode reader (DeSalle et al., 2005). The
BLAST and genetic distance methods are obviously not
able to incorporate nonmolecular characters, whereas the
Bayesian (Nielsen and Matz, 2006) and model-based de-
cision methods (Abdo and Golding, 2007) require extra
assumptions.

We also note that our BP-based method is not with-
out problems, although we have shown its powerful ca-
pacity in species identification compared to other cur-
rently employed methods. The first limitation of our ap-
proach is that an input sequence will always be assigned
to a known species when a sequence is successfully as-
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signed. This means that our BP-based method is only use-
ful for identification purposes in samples of predefined
taxa, and it is neither applicable for ambiguous cases of
species identification nor for the discovery of unknown
species, because this method, in essence, is governed by
a process of supervised training. Second, the parameter
settings that were used to train the networks, such as
choosing a three-layer network, a hidden layer that con-
tains h codes (h = int(log2(n))), a value range of 0.0001
to 0.00001 of mean squared errors, and 0.2 to 0.5 learning
rates, could have been set differently. Although these set-
tings worked well in our study, changing these param-
eters, theoretically, may have an effect on the training
process. Presumably this will not affect our basic conclu-
sions. We have tested some cases with different settings
of parameters and found that the output vectors always
tended to converge to values that corresponded to certain
species, despite the values of the main parameters used
to train the network. The only differences were observed
in the training times. A full exploration of the training
parameter space is beyond the scope of this study, be-
cause we decided that it was more important to propose
this new method that resolves some problems of cur-
rent methods for the ongoing DNA-barcoding practice as
soon as possible. Third, we used a very simple approach
of sequence encoding that seemed to perform well in
our study. However, we have not examined whether our
encoding method is better than other encoding methods
(Brunak et al., 1991; Demeler and Zhou, 1991; Uberbacher
and Mural, 1991).

Undoubtedly, using a larger DNA fragment would
help to minimize the influence of nucleotide variability
caused by random variation (Roe and Sperling, 2007),
and larger fragments of DNA contain more information
than short ones. Although both computer simulations
and the real data used in this study have shown that
long and short sequences differed in their success rates
in identifying species, it is still difficult to address ques-
tions like “How long does a gene sequence need to be
to achieve correct assignment of specimens to known
species?” because the ability to identify species using
DNA-barcoding methods may rely on many factors, such
as the number of reference sequences, the level of se-
quence divergence, and patterns of DNA sequence evo-
lution (Roe and Sperling, 2007). Therefore, we suggest
that researchers should use as long fragments in species
identification as possible in addition to considering the
underlying variability of sequences.

Although the retention of ancestral polymorphisms
(simulated cases) or possible introgressive hybridization
(ground beetles data) are problematic issues in DNA bar-
coding (Moritz and Cicero, 2004), our simulations under
coalescent models have demonstrated that the proposed
artificial intelligence–based approach has more power
than BLAST and distance-based methods in such a situ-
ation. Its power may be ascribed to its specific capacity
of dealing with complicated nonlinear systems. How-
ever, even so, the maximal success rate with the BP-based
method in our simulated cases of incomplete lineage
sorting (GTR +� + I model, 1 Ne ) was less than 95%,

whereas both the BLAST and genetic distance methods
could reach a maximum success rate of less than 70%
(the minimum success rate was around 40%; Fig. 3c).
On the other hand, our simulations demonstrate that
increasing the number of references could improve the
success rates of species identification for all three meth-
ods even in such difficult situations. But, with an in-
creasing number of reference sequences, the success rates
of species identifications tended to plateau (the BLAST
and genetic distance methods yielded success rates in
the range of 50% to 70%, whereas rates of 93% to 94%
were seen for the BP-based method). In our beetle data,
there are three nonmonophyletic species, C. (L.) arboreus,
C. (L.) procerulus, and C. (L.) hiurai (Fig. 4b). The aver-
age within- and between-species differences for these
taxa overlap (not shown). Under these difficult circum-
stances of possible retention of ancestral polymorphisms
or introgressive hybridization, it is unlikely that any
sequence-based identification method would succeed for
all taxa. To achieve higher success rates in such difficult
cases, we suggest going beyond DNA barcoding. Stan-
dard DNA barcoding can be used to identify groups of
closely related species, then longer sequences, or more
loci can be used for refined species identification within
this group. Phenotypic characters can also be used to
solve such difficult problems. We have subsequently suc-
cessfully applied four nuclear genes to this beetle group
and obtained correct species identifications (Zhang and
Sota, 2007). However, generalizations are not possible in
the absence of more thorough studies of more empirical
data. Such an inherent problem of DNA barcoding will
continue to challenge systematists for some time.

To implement our approach, we have developed a new
program in C++ named BPSI (BP-based Species Identifi-
cation) that was used to assist this analysis (the program
is freely available from zhangab2008@yahoo.com.cn).
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General definitions of terms related to BPNN.

Activation function/transfer function: The general function used to compute the value of a neuron can be any differentiable function, such as
logistic function.

Back propagation (BP): A supervised learning technique used for training artificial neural networks. It was first described by Werbos (1974)
and further developed by Rumelhart et al. (1986).

Convergence: The approach towards the target vector (a fixed state of the output) via adjustments to the weights of the network as the training
of the network proceeds.

Epoch/iteration: An epoch consists of a few steps during the training of a network—take the values of input vector, find the values of nodes for
the hidden and output layers, adjust the weights of the output and hidden layers according to the target vector. The whole process is
repeated many times so that the output vector becomes closer to target vector.

Error surface: A (k+1)-dimensional surface representing the error terms of a model depending on k parameters. The coordinates of the error
surface consist of the k parameters of the model function and the error term. The error surface can be used to find the best fit of a model by
finding the minimum of the error surface.

Initialization algorithm: A technique to initialize a layer’s weights and biases before a network is trained; e.g., with minor random weights
and biases.

Layer: A common style in which the neurons in a network are arranged. A typical BP network contains an input layer, one or more hidden
layers and an output layer. Each layer consists of a certain number of neurons depending on problems being solved.

Momentum/momentum factor: A numerical value incorporated into the BP algorithm by making weight changes equal to the sum of a
fraction of the last weight change and the new change suggested by the back-propagation rule, which avoids getting trapped in a local
minimum in the error surface during the training process.

Neuron/node: A model of a neural cell in animals and humans in a NN context, an extremely simple analog computing device, which can take
values from one or more neurons and output to other neurons via an activation or transfer function.
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